您现在所在位置: 主页 > 新闻中心

米乐M6资讯

Company information

行业动态

Industry dynamics

常见问题

Common Problem

欧洲杯-米乐M6官方网站激光器输出光功率随温度而变化有两个原因:一个是激光器的阈值电流随温度升高而增大;另一个是外微分子量效率升高而减小()

发布日期:2024-07-19 19:06 浏览次数:

  

欧洲杯-米乐M6官方网站激光器输出光功率随温度而变化有两个原因:一个是激光器的阈值电流随温度升高而增大;另一个是外微分子量效率随温度升高而减小()

  使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时,将会产生占优势的(超过受激吸收)受激辐射。在半导体激光器中欧洲杯-米乐M6官方网站,这个条件是通过向P型和N型限制层重掺杂,使费米能级间隔在PN结正向偏置下超过带隙实现的。当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。

  半导体激光器的模式分为空间模和纵模(轴模)。空间模描述围绕输出光束轴线某处的光强分布,或者是空间几何位置上的光强(或光功率)的分布,也称远场分布;纵模则表示一种频谱,它反映所发射的光束其功率在不同频率(或波长)分量上的分布。二者都可能是单模或者出现多个模式(多模)。边发射半导体激光器具有非圆对称的波导结构,而且在垂直于异质结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制情况。横向上都是异质结构成的折射率波导,而在侧向目前多是折射率波导,但也可采取增益波导,因此半导体激光器的空间模式又有横模与侧模之分。下图表示这两种空间模式。

  欧洲杯-米乐M6官方网站

  00模,此时出现光强峰值在光束中心且呈“单瓣”。这种光束的光束发散角最小、亮度最高,能与光纤有效地耦合,也能通过简单的光学系统聚焦到较小的斑点,这对激光器的应用是非常有利的。相反,若有源区宽度较宽,则发光面上的光场(称近场)在侧向表现出多光丝,好似一些并行的发光丝,在远场的侧向则有对应的光强分布,如下图所示。这种多侧模的出现以及它的不稳定性,易使激光器的P—I寺性曲线发生“扭折”(kink),使P—I线性变坏,这对信号的模拟调制不利;同时多侧模也影响与光纤高效率的耦合,侧模的不稳定性也影响出纤功率的稳定性;不能将这种多侧模的激光束聚焦成小的光斑。

  半导体激光器存在像散,像散是像差的一种。当用光学系统对半导体激光器解理面上的近场成像时,就会发现,由于像散的存在会在焦线上出现两个像点。半导体激光器在横向都是利用有源层两边折射率差所形成的光波导效应对有源区光子进行限制的,而在侧向有增益波导与折射率波导两种光限制类型。早期的条形激光器是增益波导型的,都有非平面波前。对目前大量采用的侧向折射率波导结构,在垂直于结平面方向的高斯光束的束腰在解理面上,且在束腰处为平面波前,如下图(a)所示。而当侧向的波导机构是由复折射率的虚数部分起主要作用时(即增益波导),则在该方向的光场分布如图(b)所示,在腔内距腔面为D(称像散量)的地方出现虚腰,这也是外部观察者所能看到的最小近场宽度,真正的束腰在腔中心。因此,从传播方向看去,两个方向的合成波前呈圆柱面,如图(c)所示。这种输出光是像散的。其影响是用球透镜对解理腔面成像时,虚腰的像面与腔面的像面(即横向光场束腰的像面)不对应同一处。其后果是远场分布出现“兔耳”状,在早期的氧化条形激光器中出现这种远场情况。同时,像差的存在使侧向模式增多,光谱线宽加宽。这给应用带来很大困难,除非采取消像差的措施,否则很难用一般的光学系统聚焦到很小的光斑,焦斑上光场分布不均匀,也很难使激光器与单模光纤高效率地耦合。即使是侧向有折射率波导限制的情况,由于载流子侧向分布的影响,也很难使上述表征像散大小的D值为零,一般在2μm以上。

  g决定的,然而这一波长也必须满足谐振腔内的驻波条件,谐振条件决定着激光激射波长的精细结构或纵模模谱。因为不同振荡波长间不存在损耗的差别,而它们的增益差又小,故除了由禁带宽度Eg所决定的波长能在腔内振荡外,在它周围还有一些满足谐振腔驻波条件的波长也可能在有源介质的增益带宽内获得足够的增益而起振。因而有可能存在一系列振荡波长,每一波长构成一个振荡模式,称之为腔模或纵模,并由它构成一个纵模谱,如下图所示。这些纵模之间的间隔△λ和△为:△λ=λ

  一般的半导体激光器其纵模间隔为0.5~1nm,而激光介质的增益谱宽为数十纳米,因而有可能出现多纵模振荡。然而传输速率高(如大于622Mb/s)的光纤通信系统,要求半导体激光器是单纵模的。这一方面是为了避免由于光功率在各个纵模之间随机分配所产生的所谓模分配噪声;另一方面纵模的减少也是得到很窄的光谱线宽所必须的,而窄的线宽有利于减少在高数据传输速率光纤通信系统中光纤色散的影响。即使有些激光器连续工作时是单纵模的,但在高速调制下由于载流子的瞬态效应,而使主模两旁的边模达到阈值增益而出现多纵模振荡,因此必须考虑纵模的控制。为了得到单纵模,应弄清纵模的模谱,影响单纵模存在的因素,才能设法得到所要求的单纵模激光器。

  在一般的法布里一珀罗(FP)谐振腔中,各个纵模分量在腔内得到反馈的量是相同的。在分布反馈(DFB)、分布布拉格反射(DBR)和有外部光栅谐振腔的结构中,谐振腔具有对某一波长选择反馈的作用,因而有好的纵模特性。下图比较的是在1300nm波长、侧向折射率波导的FP腔和DFB腔的纵模特性。若谐振腔长很短,则纵模间隔很大。其3dB增益带宽内允许振荡的纵模数减少。当主模两边的次模随着腔长的缩短而移出3dB增益带宽之外,则可出现单纵模振荡。

  一个环形激光器,其结构参数如图4.10所示,四块反射镜的反射率分别为r1=0.96,r2=0.8,r3=0.97,r4=0.98;T1=T3=T4=0,T2=0.2。受激辐射跃迁的上能级E2=3.2eV,能级寿命为1.54ms,中心频率发射截面为2×10-20cm2,跃迁中心波长为760nm。从基态直接泵浦到E2的泵浦速率为R02,若下能级寿命近似为0。现假定光波在腔内以逆时针方向传播,试求: (1)该激光器上能级阈值粒子数密度; (2)单位体积中中心频率阈值泵浦功率; (3)泵浦速率为阈值泵浦速率1.5倍时的中心频率激光输出强度。

020-88888888